Формули та їх виведення
Визначені для прямокутного трикутника тригонометричні функції дозволяють розв'язувати довільні трикутники з використанням основних теорем: теореми синусів, теореми косинусів й теореми тангенсів.
Теорема синусів
Теорема синусів стверджує, що відношення синуса кута до довжини протилежної сторони трикутника однакова для всіх кутів трикутника. Для плоского трикутника зі сторонами і відповідними протилежними до них кутами можна записати:
де — радіус описаного кола навколо трикутника.
Теорема косинусів
За теоремою косинусів, квадрат сторони трикутника дорівнює сумі квадратів двох інших сторін мінус подвоєний добуток цих сторін на косинус кута між ними. Для плоского трикутника зі сторонами і кутом , між сторонами :
або:
Теорема косинусів дозволяє визначити довжину третьої сторони трикутника, якщо відомі довжини двох сторін та значення кута між ними.
Теорема тангенсів
Теорема тангенсів — теорема про співвідношення між двома сторонами довільного трикутника і тангенсами півсуми й піврізниці протилежних до них кутів записується рівнянням (формула Регіомонтана):
Площа трикутника
Площа трикутника теж може бути визначена через тригонометричні функції: вона дорівнює половині добутку прилеглих сторін на синус кута між ними:
Найпростіші тригонометричні рівняння
Рівняння, в яких фігурують тригонометричні функції, називають тригонометричними. Найпростіші з них мають аналітичні розв'язки, завдяки існуванню обернених тригонометричних функцій. Оскільки тригонометричні функції періодичні, такі розв'язки не єдині, а визначаються з точністю до періоду.
Який зв'язок між теоремою синусів і формулою для радіуса описаного кола, яка наведена у Вас нижче?
ВідповістиВидалити